Skip to main content

Closing the Gap - Vicky Neale ***

Every now and then a working scientist will write a superb popular science book, but it's significantly rarer that mathematicians stray beyond recreational maths without becoming impenetrable, so I was cheering as I read the first few chapters of Vicky Neale's Closing the Gap about the attempt to prove the 'twin primes conjecture' that infinitely many pairs of prime numbers just two apart.

I'd say those first few chapters are far and above the best example I've seen of a mathematician getting across the essence of pure maths and why it appeals to them. Unfortunately, though, from then on the book gets bogged down in the problem that almost always arises, that what delights and fascinates mathematicians tends to raise a big 'So what?' in the outside world.

Neale interlaces attempts getting closer and closer to the conjecture, working down from a proof of primes several millions apart to under 600, adding in other, related mathematical work, for example on building numbers from squares and combinations of primes, but increasingly it's a frustrating read, partially due to necessary over-simplification. Time and again we're told about something, but effectively that it's too complicated for us to understand (or we'll come back to it in a later chapter), and this doesn't help make the subject approachable. I understand that a particular mathematical technique may be too complicated to grasp, but if so, I'm not sure there's any point telling us about it.

Part of the trouble is, most of us can only really get excited about maths if it has an application - and very little of what's described here does as yet. I'm not saying that pure mathematics is a waste of time. Not at all. Like all pure research, you never know when it will prove valuable. Obscure sounding maths such as symmetry groups, imaginary numbers and n-dimensional space have all proved extremely valuable to physics. It's just that while the topic remain abstract, it can be difficult to work up much enthusiasm for it.

At the beginning of the book, Neale draws a parallel with rock climbing, and that we are to the mathematicians scaling the heights like someone enjoying a stroll below and admiring their skill. And, in a way, this analogy works too well. We can certainly be impressed by that ability - but a lot of us also see rock climbing as a waste of time and consider it as interesting if you aren't actually doing it as watching paint dry.

It's not impossible to make obscure mathematics interesting - Simon Singh proved this with Fermat's Last Theorem. But that was achieved with writing skill by spending most of the book away from the obscure aspects. I'm beginning to suspect that making high level mathematics approachable is even more difficult than doing that maths in the first place.


Hardback:  

Kindle:  
Using these links earns us commission at no cost to you


Review by Brian Clegg

Comments

Popular posts from this blog

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are