Skip to main content

Chemistry in Your Kitchen - Matthew Hartings ****

As author Matthew Hartings, chemistry lecturer by day and kitchen wizard by night (well, he has things he says he's pretty good at cooking) points out, chemistry and cooking have a lot in common. You don't have to be into molecular gastronomy like Heston Blumenthal, running your kitchen more like a lab than an everyday part of the home. Whenever we deal with food and drink, we are inevitably dealing with chemistry.

As Hartings also points out, chemistry is the Cinderella of the popular science world, so it's great to see a book in this field that works reasonably well (I'll come back to that 'reasonably').

What we get here are trips through a whole host of familiar (at least, familiar if you are American) food and drink experiences, from coffee via Kraft Mac and Cheese, through meat to beer and cocktails. At his best, Hartings is an engaging storyteller, for example taking us through his experience being hauled onto a TV show at the last minute to talk about the science of bacon. He proudly records half an hour of fascinating chemistry-related bacon information - why it smells so good when it's cooking, for instance. Only to have his broadcast contribution cut down to little more than 'I love bacon.'

Hartings is equally good at little asides that you don't expect - for instance, we discover that those lovely circular vibration waves on the cup in Jurassic Park when the T-rex is approaching were produced by vibrating a guitar string under the cup. And sometimes too the chemistry itself can be surprising and interesting with a direct, understandable impact on what we eat and drink - where, for example he describes the ways that the different kinds of pectin work. But Hartings does have the classic scientist-as-writer problem that he doesn't realise when there's too much chemistry in one lump and he needs a good leavening of narrative (see what I've done there with the food metaphor?) - there are parts that are simply too chemistry-heavy.

Another issue is that some points are drawn out far longer than they really need to be - a spot of judicious editing would have helped. But it's when the chemistry gets out of control, for example in the lengthy description of the Maillard reaction. It genuinely is interesting and important in many areas of cooking - but the chemical expansion goes on far too long.

If I'm going to be really picky there was also one cosmological issue when he says that Carl Sagan’s quote ‘we are star stuff’ describes 'how every atom in our body was once made in a star.’ I'm no biologist, but I think there's plenty of hydrogen in our bodies and I'd be interested to know what stars made hydrogen from. But that's nit-picking.

Overall, I did have to skip through a few overloaded chemistry bits, but I still enjoyed the book. Hartings has a light, chatty style and brings a lot of food chemistry to life. I may have been a little generous with the star rating because of the shortage of good popular chemistry books - but there's a lot to like here. (Incidentally, the Royal Society of Chemistry really should have priced this as a popular science book - at the moment it's more like a textbook, with a cover that gives away its origins.)


Paperback:  
Using these links earns us commission at no cost to you

Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re