Skip to main content

Astrophysics: A Very Short Introduction - James Binney ****

For many readers, the very word ‘astrophysics’ is a daunting one. That’s ironic, because astronomy is one of the most popular of popular-science subjects, and it’s almost 100% applied physics. You can’t understand planetary orbits without invoking the theory of gravity; you can’t understand how stars shine without invoking nuclear fusion; you can’t understand a galaxy’s spiral arms without invoking the physics of waves. Yet apart from a few exotic topics like black holes and dark matter, the crucial role played by physics is all too often glossed over in popular astronomy books.

So this ‘Very Short Introduction’ is a welcome antidote to all that. It would be ideal for a reader who is already keen on astronomy, and has some basic school-level physics, who wants to see how the two fit together. Most amateur astronomers will have heard of ‘main sequence stars’ and the Hertzsprung–Russell diagram, but this book shows you how the mysteries of stellar evolution all have their roots in solid physical principles like gravitation, nuclear fusion, heat convection and black-body radiation. 

Another thing that comes across is that, although the universe is very big, there really aren’t that many laws of physics. So the same physics gets used over and over at different scales – with, for example, the same principle of ‘conservation of angular momentum’ shaping the structure of the solar system, black hole accretion discs and entire galaxies. Other areas of physics, which may not be very prominent here on Earth, really come into their own in an astronomical context. This applies most obviously to relativity – both the special and general theories – which can explain a whole range of phenomena from the stability of the solar system to cosmic rays and gravitational lenses.

A short, wide-ranging book like this is always going to lack depth, but that’s not a bad thing with a potentially heavy subject like this one – especially when, as in this case, the author is a professor of astrophysics. Fortunately James Binney doesn’t try to blind readers with science, but he doesn’t talk down to them either. That’s probably a good thing, too, since I suspect the very title of the book is going to have a self-selection effect on its readership. The sort of people who buy this book won’t want to be talked down to.

A few months ago it was mentioned to me that these OUP ‘Very Short Introduction’ books tend to be dry summaries rather than narrative-driven. That’s pretty much the case here. Essentially the author presents a long list of facts, rather than posing a series of rhetorical questions (of the sort the reader might have) and then answering them, or showing how they were tackled in a historical context. I think I might have liked that better, but I can’t mark the book down on that account because it’s obvious that it is simply sticking to the house style for the series. Even so, it’s an enjoyably easy read, and a long way from being a stodgy textbook – I mean, what textbook would tell you the Galaxy contains ‘zillions of dark-matter particles’?


Paperback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Andrew May

Comments

Popular posts from this blog

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i