Skip to main content

Goldilocks and the Water Bears - Louisa Preston ***

Although it made me cringe, don't be put off by the title - this is a book about the equally strangely named astrobiology (the author says it combines biology and space - i.e. the biology and environmental considerations of potential alien life, but strictly the name means the biology of stars), which is potentially a very interesting subject.

The 'Goldilocks' part of the title, as most readers will recognise, refers to the Goldilocks zone - the region around a star where a planet would be not too hot, not too cold but just right for carbon-based, water-dependent life. As Louisa Preston makes clear, this is no longer given the significance it once was, as some of the best candidates for (low level) life in our solar system are the moons of Jupiter and Saturn, which appear to have liquid water oceans under a thick ice crust. Even so, the concept is useful.

As for the water bears, they were far and above my favourite part of the book - fascinating little 8-legged creatures that can go into a dehydrated state where they can be exposed to everything space can throw at them, from extreme low temperatures to radiation - and still come back to life when rehydrated at the right temperature. They are interesting in this context both as a type of life that could in principle support transport through space to seed a new planet and also as a model of some of the more extreme ways that life could survive in habitats that we might once have thought would never support it.

Apart from the water bears, the book is at its best in is its survey of possible places life could exist and its enthusiasm for the concept of astrobiology. But there are some problems. Large chunks of the book consist of what Rutherford referred to as 'stamp collecting' - little more than listing details of the various possibilities. This comes across particularly strongly in the section on extremophiles - organisms that can exist in extreme conditions - on Earth (as a model for life elsewhere). For page after page we get lists of bacteria and other organisms that can survive in various conditions. There is also heavy repetition. So, for example, there are three separate sections talking about the possibilities for life in the water beneath the ice on the moon Europa, with big overlaps in content. This reflects a distinct lack of narrative structure to the book, which is probably why one of the most interesting questions in the subject - if life came into existence easily, why does it appear to have only done so once on Earth? - isn't covered.

I'm sure Preston knows her stuff on astrobiology, but a science writer has to have a much wider knowledge and here she has the biggest problems. Every popular science book includes the odd error, but here there are so many, it's worrying. For instance, we are given the excellent movie The Martian as an example of a movie featuring aliens. Unless a martian pops up in the corner of a frame, or you count a potato grown on Mars as an alien, this could only be the result of simply looking at the title and assuming that it does without checking.

Things get worse when we look back into history. We are told that the Ancient Greek Democritus 'realised that the Sun was just as star... in his wisdom, he understood that the planets revolved around the Sun and that Earth itself is a planet. He even theorised about exoplanets...' But he didn't. Democritus didn't have a heliocentric model - I can only assume this is a confusion with the later Aristarchus - nor did he realise all that clever astronomical stuff. He did support (but not originate) the idea of the pluralism of worlds, but this was not an astronomical theory, more like the parallel universes beloved of pulp science fiction. Worse still, we are told that Aristotle with dates given as 460-370 BC had Plato (428-327 BC) as a mentor. Plato was, indeed, Aristotle's teacher, but you don't need anything but basic logic to suspect that Aristotle wasn't 32 years older than Plato.

Sadly, it's not just the history that is suspect - physics presents some issues too. We are told that 'deuterium is an isotope of hydrogen,  but holds two neutrons rather than just one in the nucleus'. Unfortunately hydrogen has no neutrons, and deuterium has just one. We are told there was no light before stars formed, which is unfortunate for the Cosmic Microwave Background, and we are told that the nuclei of two hydrogen atoms combine to make helium, which would make it rather underweight. And, yes, inevitably, we get the myth that Giordano Bruno was martyred for his idea that there were many suns with their own solar systems.

The combination of this error rate and the lack of writing style means that overall things could have been a lot better. There is plenty of interesting material in here (though how it can be described as an 'expert romp' as it is on the cover, I don't know), but the book does not do the subject justice.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re