Skip to main content

Soccermatics - David Sumpter ****

* UPDATED * To include paperback
I need to be honest up front - my first reaction on seeing this book was 'Let someone else review it.' I have zero interest in football, and don't understand why anyone cares about such a dull activity. But then it struck me that what better test could a book have than being tried out by someone without an interest in the theme, and I'm glad I stuck with it, because I really enjoyed it despite myself.

This is because David Sumpter may be using soccer as a hook for mathematical explorations, but the book is far more about the maths than the anything-but-beautiful game. So, for instance, the first chapter begins with the distribution of football results during a season, but quickly expands from that to explore the Poisson distribution and its much wider applications. If it weren't for the deeply irritating introduction, which is sickeningly enthusiastic about football, and a tendency to tell us far too much about players, pundits, teams and managers that mean nothing to me, I would have given the book five stars.

Even the football-oriented parts can be engaging to the non-fan. I don't care if Manchester City is better than Liverpool and I have no idea who Messi is, but when Sumpter abstracts from overpaid individuals and team loyalties, there is some distinctly interesting stuff about, for instance, patterns of flow on the pitch or the way a Mexican wave travels around a stadium. And there was certainly amusement to see that one of the football 'experts' Sumpter criticises predicted that Leicester would be relegated from the premier league in 2015/16, when, just before the book was published, they ended up as champions.

I also found Sumpter's last section really engaging. Here, he spends some time on an experiment to see if the effective use of data and mathematical models can make betting on football games more of a science than an art. Sumpter stresses that gambling is potentially dangerous and that the bookies make sure they come out on top overall - but he demonstrates that with the right mathematical approach you can possible beat the system by a few percentage points. There's almost a feel of the TV series Hustle about this attempt to take on the bookies and beat them at their own statistical game - and Sumpter puts his money where his mouth is, staking the advance for this book (at least, a part of his advance, or he was ripped off by his publisher).

Did reading Soccermatics turn me into a football fan? Absolutely not. I can see the point of enjoying a kick around, but I can't understand why anyone finds football or footballers interesting. However, Sumpter's book has persuaded me that there is a lot more to running a football team than herding musclebound athletes - that, in principle at least (it's not obvious how much teams actually apply these methods) mathematical models can improve team tactics and result in better performance - and that mathematical modelling can be just as interesting when applied to the football pitch as it is when used to analyse the movements of a flock of birds or a shoal of fish.

There may have been a few small sections I had to skip over,  when I felt that Sumpter was getting too carried away with his obvious love of the game, but mostly, as the subtitle hints, I enjoyed my mathematical adventures in the 'beautiful' game.


Hardback:  
Paperback:  
Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re