Skip to main content

Algorithms to Live By - Brian Christian and Tom Griffiths *****

I was captivated by much of this book. It's the perfect antidote to the argument you often hear from young maths students - 'What's the point? I'll never use this in real life!' This often comes up with algebra (which often is useful), but reflects the way that we rarely cover the most applicable bits of maths to everyday life at high school. Although this book is subtitled 'the computer science of human decisions', it's really about the maths of human decision making (which is often supported by computers) - I suspect the 'computer science' label is to make it more sexy than boring old mathematics.

If there is any danger that the 'M' word would turn you off, the book tends to skip over the mathematical workings, concentrating on the outcomes and how they're relevant to the kind of decisions we make in everyday life - and it's that application side that makes it particularly interesting (helped by a good, readable style from the co-authors). So, for instance, one of the earliest areas covered is the kind of decision where you are selecting between a number of options that arrive sequentially and where you have to make a decision on which is best for you part way through the sequence, even though there may be better options in the future. The classic examples for this are some kinds of job interviews, house buying and finding a partner for life.

It might seem there can be no sensible advice, but mathematically it's very clear. You wait until you've got through 37% of the choices, then pick the next one that's better than any you've seen before. It's not that this will necessarily deliver your best of all possible worlds. More often than not it won't. But it will give you a better result than any other mechanism for deciding when to go for a particular option. Of course it's not always easy to apply. For example, unless it's something like an interview with closed applications, how do you know when you are 37% of the way through the available options? Luckily, the authors point out that there are approximations to get around this, which include that the approach can also apply to the amount of time available for the process.

And that's just the start. Along the way you will discover the best way to sort the books on your shelves into alphabetic order (something I confess I did last year, using a sub-optimal mechanism), how to balance exploration (for example, trying out new restaurants) with exploitation (for example, returning to tried and tested restaurants), how the concept of caching can revolutionise your filing system (and make that pile of papers on your desk that everyone mocks the sensible approach), why Bayes theorem is so important and much more. I absolutely revelled in this book.

The content only fades a bit when the applications aren't about real world decisions. So, for instance, there's some material about how the internet works that is very interesting if you like that kind of thing (I do), but hasn't got the same feeling of personal utility to it, so lacks some of the bite of the other chapters. This is even more obvious in the section on randomness. I would also have liked to see more acknowledgement that most of the content was really from the area of study called operational (operations in the US) research, a discipline that happens to make use of computers, rather than true computer science - but that's a specialist moan.

Realistically speaking, I don't think much of the content of this book will truly change how any of us do things. Interestingly, the authors reveal than an expert in the field pretty much consciously ignored the mathematical approach in a particular case, opting for more of a 'feels right' choice. But that doesn't stop the whole business, whether it's the relative simplicity of the 37% rule or the mind twisting possibilities of game theory, from being both potentially practical and highly enjoyable as presented here. Recommended.


Hardback 

Kindle 
Using these links earns us commission at no cost to you

Author interview
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re