Skip to main content

Particle Physics: a very short introduction – Frank Close ****

Frank Close packs in a lot of information in this “very short” introduction (notice there’s no promise about difficulty!). That is at once this book’s biggest strength and its potential challenge. The reader who picks it up expecting a breezy, bird’s-eye-view of particle physics is in for a surprise. But if you stick with it, your efforts will be amply rewarded. In ten concise, albeit dense, chapters, Close covers everything from the basic scale of fundamental particles and forces and the three families of matter to quantum chromodynamics, the origins of mass, and even more esoteric subjects like dark matter.
The first four chapters are a particular delight. One of Close’s strengths is his ability to make extremely large or small quantities relatable by using apt analogies and by carefully explaining the units physicists use, such as electron volts. His writing is consistently accessible, unassuming and fun in a wry sort of way, but you never get the sense that he is dumbing down the subject matter or taking the sorts of shortcuts that lead to misunderstandings. These chapters serve as an admirable mini-introduction in their own right.
I have to admit that the fifth and sixth chapters, though worthwhile, occasionally tried my patience: these focus heavily on the history and development of particle accelerators and detectors. While I agree that covering the experimental side of particle physics is necessary in order to understand its current state, Close’s descriptions of cyclotrons, synchrotons, linear accelerators, emulsions, bubble and spark chambers, neutrino detectors and the likes could have benefitted from less historical detail, which is interesting but not essential.
In thinking about the book’s four last chapters, it’s inevitable to point out that these were written before the LHC discovered the Higgs boson in July 2012, so there is some speculation about the LHC that an updated edition would remove or replace. One wonders too, based on what we now know, whether speculative ideas such as supersymmetry, for which we have yet to find any experimental confirmation, might be de-emphasized. But these minor quibbles don’t detract much from an engaging and rigorous discussion of the standard model, antimatter and questions that remain open. Close’s clear, balanced approach is to be applauded. I should also point out that there are plenty of helpful diagrams and tables – as well as a few equations – throughout.
It seems only fair to acknowledge that rating this book using stars may seem a bit prosaic, given its subject matter. So I will translate this rating into particle physics terms: On a pentaquark (they haven’t been confirmed experimentally yet, but exist hypothetically) scale of book rating, I award this volume two positively charged K mesons. And if that just has you scratching your head, I encourage you to pick up this excellent primer.

Paperback 

Kindle 
Using these links earns us commission at no cost to you
Review by Alvaro Zinos-Amaro

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur