Skip to main content

Who Invented the Computer? – Ian Watson

Ian Watson is the author of The Universal Machine and featured in a recent Four Way Interview.
Saturday June 23 2012 was the centenary of the birth of Alan Turing, the troubled genius who invented the modern computer. Why though do so few people recognize his name and his great achievements?
In 1936 English mathematician Alan Turing, published a paper, On Computable Numbers, with an application to the Entscheidungsproblem. This became the foundation of computing. In it Turing presented a theoretical machine that could solve any problem that could be described by instructions encoded on a paper tape. A Turing Machine could calculate square roots, whilst another might solve Sudoku puzzles. Turing demonstrated you could construct a single Universal Machine that could simulate any Turing Machine. One machine solving any problem for which a program could be written – sound familiar? He’d invented the computer.
Then, computers were people who did calculations. As the Allies prepared for WWII they faced a shortage of computers for military calculations. When men left for war the shortage got worse so the US mechanized the problem building the Harvard Mark 1; it could do calculations in seconds that took a person hours. The British also needed mathematicians to crack the Nazi’s Enigma code.
Turing worked at Bletchley Park, perhaps better know as “Station X,” where code-breaking became an industrial process; 12,000 people working 24/7. Although the Polish had cracked Enigma before the war the Nazis had made Enigma more complicated; there were 10114 permutations. Turing designed a machine, called the Bombe, that searched through the permutations and by war’s end the British were reading all Enigma traffic. Historians agree that Turing shortened the war by as much as two years and Churchill would later say that Turing had made the single biggest contribution to Allied victory in the war.
As the 1950s progressed business was quick to use computers and as the technology advanced business computing became an industry. These computers were all universal machines – you could program them to do anything.
There will positively be no internal alteration [of the computer] to be made even if we wish suddenly to switch from calculating the energy levels of the neon atom to the enumeration of groups of order 720. It may appear somewhat puzzling that this can be done. How can one expect a machine to do all this multitudinous variety of things? The answer is that we should consider the machine to be doing something quite simple, namely carrying out orders given to it in a standard form which it is able to understand. – Alan Turing
By the 1970s a generation was born who grew up with “electronic brains;” they wanted their own personal computers. The problem was they had to build them. In 1975 a college dropout called Steve Wozniak built a simple computer around the 8080 microprocessor, which he hooked up to a keyboard and TV. His friend, Steve Jobs, called it the Apple I, and found a Silicon Valley shop that would buy 100 for $500 each. Apple had its first sale and Silicon Valley’s start-up culture was born. Another dropout, Bill Gates, realized that PCs needed software and that people would pay for it – Microsoft would sell them programs.
Turing had another vision, one day computers would think? But, how would you know a computer was intelligent? He devised the Turing Test; a judge sitting at a computer terminal types questions to two entities: a person and a computer. The judge decides which entity is human. If the judge is wrong the computer passes the test and is intelligent.
Artificial intelligence (AI) is entering your daily life. Car satnavs and Google search use AI, Apple’s iPhone can understand your voice and intelligently respond, car manufacturers are developing autonomous cars. Turing’s vision of AI will soon be a reality.
In 1952 Turing was prosecuted for being gay and was sentenced to chemical castration. This caused depression and he committed suicide by eating an apple he’d poisoned. Outside of academia Turing remained virtually unknown because his WWII work was top secret. Slowly word of Turing’s genius spread; in 1999 Time Magazine named him as one of the “100 Most Important People of the 20th Century,” stating: “The fact remains that everyone who taps at a keyboard, opening a spreadsheet or a word-processing program, is working on an incarnation of a Turing machine.” and in 2009 the British Prime Minister issued a public apology:
…on behalf of the British government, and all those who live freely thanks to Alan’s work, I am very proud to say: we’re sorry. You deserved so much better.
Finally Alan Turing is getting the recognition he deserves for inventing the computer, his Universal Machine that has transformed our world and will profoundly influence our futures.

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur