Skip to main content

Spider Silk – Leslie Brunetta & Catherine L. Craig *****

Somewhere in Spider Silk the authors describe one of the first arachnids coming out of the sea onto the land around 400 million years ago. There was little vegetation but for 150 million years these trigonotarbids persisted. They had eight legs and they looked very much like today’s spiders, but with one very important difference: they made no silk.
Silk-making arachnids, attercops, arrived, perhaps, around 20 million years later, but it was not until 290 million years ago that the first arachnids with spinnerets arrived on the scene. These were called mesotheles and 90 species survive to this day. Their mating ritual involves limbo dancing. Some of them lay trip wires. They live in burrows lined with silk and with silken trap doors, and from these they lie in wait…
The mygalomorphae, which arrived 50 millions years later, are hairy and rather large (the tarantula is an example) and unlike the mesotheles, have spinnerets at the end of their abdomen which gives them greater flexibility in web design. Some of them are lethally amorous: interrupt the hour-long clinch of the Sydney Funnelweb at your peril. A bite from one of these little beauties can cause an autonomic storm that can be fatal in the vulnerable.
The next development came with the araneomorphs. These are the most successful arachnids in the world today. They outnumber the mesotheles and mygalomorphs by fourteen to one, and are the silk connoisseurs. All arachnids produce different sorts of silk, but the silk of araneomorphs is made to order. It can be superstrong, superstretchy, supersticky or superfluffy according to requirements – and scientists would love to emulate it.
136 million years ago the araneoidea superfamily came up with the spider trade-mark: the orb. However, since this turned out to have a major design flaw, this is under further development by firm arachnid today.
The book makes fascinating reading with plenty of quirky spider facts. The origin, genetics and molecular structure of the silk is assessed and used to explain the properties, and all of this then set in the context of the web and the behaviour of the spider. Along the way it takes the opportunity to discuss aspects of basic genetics, developmental evolutionary theory and evolution itself. In fact, its description of the finer points of Darwin’s evolutionary theory and the explanation of how it differed from earlier theory was the best I’ve ever read. It will give you a new appreciation of the wild life of your home, and give you an excellent excuse not to dust.

Hardback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Clare Dudman

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re