Skip to main content

Magical Mathematics – Persi Diaconis & Ron Graham ***

This is an oddity of a popular maths book in that the approachable bits of the book aren’t, on the whole, about maths but about magic. Magic is a strange topic – for me, certainly, it has a fascination. When I was at school I briefly flirted with the school’s magical society, but in the end I hadn’t the patience to practice the tricks over and over again until they were slick enough to be worth watching. I wanted instant magic that didn’t require sleight of hand ability. The other interesting thing about magic as a topic is that we seem, mostly, to have lost patience with the traditional forms. On the TV show Britain’s Got Talent, magicians mostly don’t fare well as the audience and judges don’t have the patience to sit through the build. We love Derren Brown’s dramatic showmanship, but not traditional tricks. This means that Persi Diaconis and Ron Graham have a potentially difficult audience.
Magical Mathematics really has three different threads interwoven. There’s biographical information about magicians (this is the smallest part). There are details of how to do tricks. And there’s the maths behind the tricks. These are actual tricks which at first sight should have appealed to my young self because they are worked by mathematics – the magician need have no physical dexterity. This sounds horribly like the kind of recreational maths (you know, magic squares and the like) that mathematicians get all excited about but for most people cause big yawns. However, when you look at some of these tricks in terms of the effect, they are very impressive. I particularly like one where five spectators each cut a pack of cards in turn, then take a card each. They are asked to do a simple thing (everyone with a red card stands up), and the magician then tells each of them which card they are holding. That really is impressive.
Of course there’s no gain without pain, and in the case of this trick, though there is no dexterity required, you do have to remember (or otherwise access) quite a lot of information. Even so it’s a great trick, and the maths behind it, on de Bruijn sequences (don’t ask) is also really interesting, including some real world applications of the mathematical structure that’s used. This is by far the most engaging bit of the book – but even here, the maths isn’t particularly well explained. I didn’t really get the first explanation and it was only because there’s a second chapter dedicated to the applications that I grasped what was going on. It’s not complicated, it’s just that the explanation isn’t particularly well written.
Other sections of the book proved less interesting. The tricks were not so impressive or the maths was obscure, hard to follow and, frankly, more than a little dull. It got even worse when juggling was brought into the mix, something that, along with mimes, should have been banished from the world many years ago. Only jugglers appreciate juggling.
The underlying thesis, that you can do real, entertaining magic driven by maths was interesting (though I wish it hadn’t concentrated so much on card magic, which is one of the less appealing aspects of the business). The idea of combining explanations of tricks with info on the maths was good too. But overall the book (and I’ve no idea why it’s in a near-coffee table format) didn’t really work for me.

Hardback:  

Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i