Skip to main content

The Hidden Reality – Brian Greene *****

I hugely enjoyed Brian Greene’s previous books, The Elegant Universe and The Fabric of the Cosmos, so when I saw this title had been released I was looking forward to reading it. In The Hidden Reality, Greene explores the various possibilities of there being parallel universes beyond our own. He takes us through, in all, nine conceptions of the multiverse that seem to emerge naturally from the mathematics behind some of our most successful physical theories. The book turns out to be an absolute delight.
We start with the fascinating idea that, if the universe is infinite in extent, this implies the existence of an infinite number of places in the universe where physical conditions are identical to those we find around us, and therefore an unending number of worlds in which ‘you’ and ‘I’ are going about their lives in exactly the same way as we are doing, here. Later in the book, we look at, among other things, the ‘braneworlds’ scenario that comes out of string theory, and the idea that we live in one universe among many in a computer simulated multiverse.
For each variation on the multiverse theme, Greene first brings us up to speed on the physics we need in order to make sense of the ideas to be looked at, bringing in discussions of quantum mechanics, relativity, string theory and thermodynamics where necessary. This background information is incredibly useful in its own right – Greene’s explanation of the difficulties of merging quantum mechanics and general relativity, for instance, is better than I have seen anywhere else. Whilst good across the board, the best chapter is the one on the ‘Many Worlds’ interpretation of quantum mechanics – the summary here would be ideal to read before going on to look at a more full exploration of the subject.
Greene clearly appreciates the difficulties the layperson is likely to have in coming to grips with the tricky concepts being introduced, and he knows how to take the absolute beginner along with him, and to bring them to a good level of understanding. His analogies always get across the main ideas well, and when things get tough, the reader is warned.
Many of the ideas here do seem highly speculative, and some will argue that, because they appear not to be falsifiable, this is not good science. Greene anticipates this reaction, however, and devotes a chapter to it. He outlines the experiments and observations that could, in fact, give us an indication as to whether any of these ideas are on the right track. He sensibly emphasises that we shouldn’t consider sound any theory that cannot be verified by observation or experiment, and, ultimately, he is convincing that the ideas discussed in the book are at least worth considering for the time being.
If you have read Greene’s previous books, there will be occasions where you may want to skip a section or two, where the discussions overlap a little with those covered in the previous books. But whatever background you to come to this book with, you’re likely to be very impressed with the presentation of the science and hugely intrigued by the ideas themselves. I have no hesitation in giving this book five stars, and can easily see it being among the best popular science books of 2011. Highly recommended.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Matt Chorley

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re