Skip to main content

From Eternity to Here – Sean Carroll *****

I have a big claim for this book – almost scarily big. This is the book Stephen Hawking’s A Brief History of Time should have been. Let me explain. Despite being the absolute classic of the genre, Hawking’s book has two huge flaws. Firstly it doesn’t do what it says on the tin. It has lots of great stuff to tell us about relativity and black holes and much more. But it doesn’t really tell us anything much about time.
Secondly, BHoT isn’t the most readable of popular science books. It is infamously a book that many have started but few have finished. When you look at the concepts it covers there’s nothing too scary (at least, by modern popular science standards), but it isn’t put across in a way that’s easy to pick up.
So we come to Sean Carroll’s book. And it is a joy. It really does tell us about time, better than anything I’ve ever read. To be fair, most of the content is about entropy and the second law of thermodynamics (which ought to be better understood, and is strongly time-related) with a good dose of relativity and quantum theory thrown in. But it really does explore the nature of time.
As for the second issue with BHoT, there is good news and bad when we put From Eternity to Here (I title I hate, by the way) alongside it. This book explains significantly more complex matters than Hawking’s does. But it does so much more clearly. I’m not saying it is all an easy read. You have to read it slowly and carefully – so some readers will definitely be put off – but it hugely repays the effort. I particularly like the way that Carroll not only presents with the orthodox picture, but his own personal views, making it clear where these vary from many other physicists and cosmologists, but nonetheless making powerful points.
Of course it’s not perfect. It is occasionally a trifle obscure. There are occasions the mask of accessibility slips and he forgets who he is talking to. The section on coarse graining, microstates and macrostates, for example, would be better suited to an undergraduate lecture than the intended readership. And I particularly disliked Carroll’s cat and dog analogy for quantum theory, which I found more confusing than just talking about the particles that feature in the theory. The analogy was both cringe-making and confusing.
I also think Carroll (to be fair, like quite a few scientists) needs to take a look at his dictionary when it comes to his approach to paradoxes. ‘Paradoxes are impossible,’ he bluntly states. No they are not – you are thinking of fallacies. Although paradox is sometimes applied in this sense, the better meaning is something that appears impossible but is actually true, something that runs counter to common sense. (Which is why the author is also wrong moaning about EPR being called a paradox.)
A final mini-moan – I wish he had told us how the ekpyrotic universe (see Endless Universe) fitted with his entropy-based analysis of different models of the universe, as he totally ignored it. But these are minor concerns in what is a tour-de-force of popular science writing in the ‘you really need to read this carefully and think about it’ school (as opposed to ‘sit back and enjoy it.’) Highly recommended.

Paperback:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur