Skip to main content

Endless Universe – Neil Turok & Paul J. Steinhardt ****

The standard big bang inflationary model of cosmology describes our Universe as beginning as an infinitesimal point of infinite density, energy and mass known as a singularity, where all of the known laws of physics break down. For reasons we are still not certain about, this singularity started to expand. In order to explain certain features of the universe around us (mainly the smoothness of the cosmic background radiation), it has been proposed that our early universe went through an exponentially rapid period of expansion – this is dubbed ‘inflation’.
Although this is the conventional view that cosmology holds about the origins of our universe, it is not without its flaws. In particular some astrophysicists are unhappy about the proposed singularity at the start of our universe. Inflation theory has also had to be tinkered with in order to take in to account the existence of dark matter and more recently dark energy, driving our universe’s expansion to accelerate, contrary to the expectations from the original inflationary theory.
Turok and Stienhardt have been developing their repost to the inflationary model for a number of years. Known as the ekpyrotic (without fire) theory – in essence this puts forward the idea that instead of a singularity, our universe was created as the result of two branes colliding with each other and triggering a ‘big bang’ event. They take this idea further and propose that we live in a cyclic universe (this is not a new idea in itself) where the two branes move along higher dimensional space and regularly collide and separate over periods of billions of years. If they are correct their model could successfully explain the features of our universe that the inflationary model fails to cover.
This book describes in a highly accessible and readable manner the outline of Turok and Stienhardt’s new theory. Mercifully, in place of complex mathematics, diagrams are employed to get across the complex ideas featured. This is no mean feat given the fact that the book’s topic is at the cutting edge of 21st century cosmology.
After deftly describing inflationary theory and pointing out where its flaws lie, the authors give an account of how they developed their theory. Parts of this are auto-biographical, which really gives you a flavour of how cosmologists work.
At present there is little observational evidence to support the ekpyrotic model – as the authors themselves point out. This may be about to change within the next decade or so as gravitational wave detectors could detect the characteristic energy signature from gravity waves created in the brane collision.
The idea that there may well have been a universe before ours has also gained credence as some cosmologists have claimed as recently as this week to have detected imprints in the cosmic microwave background that suggest our universe may have ‘bubbled off’ from a previous universe.

Paperback:  
Using these links earns us commission at no cost to you
Review by Scotty_73

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re