Skip to main content

Before Time Began - Helmut Satz **

This is an odd little book. The aim seems to be to provide more detail about the most widely accepted cosmological theories than we usually get in a popular science title, which to some extent it does - but in a way that, for me, fails the Feynman test (more on that in a moment).

In his introduction, Helmut Satz tell us that not everyone agrees with some of the things he is going to describe, but I'm not sure that's good enough. For example, we are presented with the full current inflation theory as if it were fact, yet it seems to be going through a whole lot of uncertainty at the time of writing. It's fine to present the best accepted theory, but when there is significant concern about it, it's important to at least outline why it has problems and where we go from here.

In content terms, it's hard to fault what Satz covers - it gives us everything from a description of spontaneous symmetry breaking to the Higgs field, all with significantly more detail than you might normally expect. There's plenty too, for example, on nucleosynthesis and the cosmic microwave background. The problem I have with this book is the way this is presented.

There's one trivial issue. I hate the way the book is structured. It treats all the headings as if they were part of the body text. This totally misunderstands the point of headings, which is to provide an indicator of a clear break. What's more, readers don't always read the text of a heading, so end up with disjointed text. It's ironic that a book about the structure of the universe so messes up the structure of a book.

The bigger issue, though, is that Feynman test. The great American physicist Richard Feynman famously made the distinction between knowing something and knowing the name of something. Feynman pointed out that his dad taught him as a kid when looking at birds: 'You can know the name of that bird in all the languages of the world, but when you’re finished, you’ll know absolutely nothing whatever about the bird. You’ll only know about humans in different places, and what they call the bird. So let’s look at the bird and see what it’s doing—that’s what counts.'

I got exactly that feeling here - we're told the name of everything but don't get any feel for what's really happening or why it's happening. Take transitions and spontaneous symmetry breaking - there is a good example made using magnetisation (much clearer than some of the analogies I've seen) - but the phenomenon is just described. We get no idea why this is happening. Elsewhere analogies are used, but not necessarily very effectively. In describing the action of the Higgs field we are told it's a bit like the way a snowball gains mass by rolling through snow. But the snow it rolls through is the same material and itself has mass - the snowball is just accreting mass - so as an analogy it provides little benefit.

I don't think this book is a waste of time. It will fill in some gaps for those who only have a conventional popular science view of cosmology and may encourage some to move onto the more mathematical material. But I don't think it really achieves what it sets out to do.

Hardback:  
 
Kindle:  



Review by Brian Clegg

Comments

Popular posts from this blog

The Great Silence – Milan Cirkovic ****

The great 20th century physicist Enrico Fermi didn’t say a lot about extraterrestrial life, but his one utterance on the subject has gone down in legend. He said ‘Where is everybody?’ Given the enormous size and age of the universe, and the basic Copernican principle that there’s nothing special about planet Earth, space should be teeming with aliens. Yet we see no evidence of them. That, in a nutshell, is Fermi’s paradox.

Not everyone agrees that Fermi’s paradox is a paradox. To some people, it’s far from obvious that ‘space should be teeming with aliens’, while UFO believers would scoff at the suggestion that ‘we see no evidence of them’. Even people who accept that both statements are true – including  a lot of professional scientists – don’t always lose sleep over Fermi’s paradox. That’s something that makes Milan Cirkovic see red, because he takes it very seriously indeed. In his own words, ‘it is the most complex multidisciplinary problem in contemporary science’.

He points out th…

The Order of Time - Carlo Rovelli ***

There's good news and bad news. The good news is that The Order of Time does what A Brief History of Timeseemed to promise but didn't cover: it attempts to explore what time itself is. The bad news is that Carlo Rovelli does this in such a flowery and hand-waving fashion that, though the reader may get a brief feeling that they understand what he's writing about, any understanding rapidly disappears like the scent of a passing flower (the style is catching).

It doesn't help either that the book is in translation so some scientific terms are mangled, or that Rovelli has a habit of self-contradiction. Time and again (pun intended) he tells us time doesn't exist, then makes use of it. For example, at one point within a page of telling us of time's absence Rovelli writes of events that have duration and a 'when' - both meaningless terms without time. At one point he speaks of a world without time, elsewhere he says 'Time and space are real phenomena.'…

The Happy Brain - Dean Burnett ****

This book was sitting on my desk for some time, and every time I saw it, I read the title as 'The Happy Brian'. The pleasure this gave me was one aspect of the science of happiness that Dean Burnett does not cover in this engaging book.

Burnett's writing style is breezy and sometimes (particularly in footnotes) verging on the whimsical. His approach works best in the parts of the narrative where he is interviewing everyone from Charlotte Church to a stand-up comedian and various professors on aspects of happiness. We get to see the relevance of home and familiarity, other people, love (and sex), humour and more, always tying the observations back to the brain.

In a way, Burnett sets himself up to fail, pointing out fairly early on that everything is far too complex in the brain to really pin down the causes of something as diffuse as happiness. He starts off with the idea of cheekily trying to get time on an MRI scanner to study what his own brain does when he's happy, b…