Skip to main content

Reality Is Not What It Seems - Carlo Rovelli ***

I was no great fan of Carlo Rovelli's flowery, overpriced previous title, and the introduction to this book on loop quantum gravity has a similar style, but thankfully it settles down a little. However, there is still rather too much of the woffle, reverting to floral form on Lucretius and his atomist poem on nature. For those who remember How to be Topp, this is the Fotherington Thomas school of popular science - all 'Hullo clouds, hullo sky!'

We then get onto Galileo. At times, Rovelli's history of science goes wildly astray - he says, for example, that Galileo was the first experimenter -  what of William Gilbert or the medieval optical experiments, for example? Similarly, Rovelli tells us that no one from Newton to Faraday tried to come up with an explanation for action at a distance - which just isn't true. Not only did Newton himself have an idea, there were plenty of mechanisms proposed. This isn't a matter of obscure history, you can read about it in Wikipedia. Best then to move on from mangled recounting of the past and get on to the more recent physics.

Here, in a gallop through special and general relativity and quantum theory we get far more rigour, though oddly it often comes in ways that aren't always obvious - for example we jump into to general relativity with the idea that spacetime is a field, without any of Einstein's far more accessible route using the equivalence principle. It fits better with the model that Rovelli is using, but it doesn't help the reader understand what he is talking about.

The last part of the book takes in what has been its goal all along - loop quantum gravity. In his opening, Rovelli remarks that a book (for the public) on loop quantum gravity didn't exist which is why he had to write it. This isn't true, there was Martin Bojowald's Once Before Time - but that failed singularly to explain the theory in a comprehensible way. This is where I hoped I could finally get the point of Rovelli's writing. I desperately want to see a good, accessible introduction to loop quantum gravity.The good news is that Rovelli on the topic reads a lot more smoothly than anything I've so far read - but he still fails to bring the topic to a level the general reader can get his or her head around. The book should have had an editor brave enough to keep sending it back until Rovelli had got there, but it clearly didn't happen.

You may gather I had problems with this book, but I have to congratulate Rovelli for trying. What was most frustrating was that if loop quantum gravity were as obvious to physicists and as complete as it's presented, it would be quantum gravity solved and no one would be bothering about string theory (which Rovelli only gives a passing mention to). Tick. Next problem? We know it's not really like that. Also, like many physicists seem to do, Rovelli either doesn't realise a model isn't the same as reality, or forgets to explain this to his readers. Even so, it is an interesting book despite its problems.


Hardback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i