Skip to main content

Enhancing the Effectiveness of Team Science - Nancy Cooke & Margaret Hilton (Eds.) ****

Editor's note: This book is not popular science in the usual sense and the primary audience is those working in science, but it gives insights that will prove valuable beyond the science community.

Research of biological, chemical or physical sciences in all their guises is increasingly the domain of large-scale, multi-centre, cross-disciplinary collaboration. Almost gone is the era when individual investigators secured funding to undertake narrowly defined projects, replaced by a ‘team science’ philosophy in which both practical and theoretical research, basic or applied, is performed by consortia of scientists with a range of skill sets who are brought together to address so-called grand challenges. As team members are typically in geographically distinct locations, often in different countries or continents, this provides logistical obstacles to project coordination, management and implementation. Knowing how a team-based approach can function optimally, as well as how universities and research institutions may best provide infrastructure and administrative support is critical to success in achieving scientific goals and translational outcomes.

It is in this context that Enhancing the Effectiveness of Team Science distils the collective thoughts of the research committees of the US National Academy of Sciences to proffer guidance on improving team effectiveness, facilitating virtual collaboration, enabling institutional backing and procuring funding. Individual sections focus on team composition, leadership and professional development of team members. How organisational research policies may help and not hinder collaborative research is also examined. This book offers robust recommendations to science research agencies and public policymakers, as well as valuable advice for university research managers, team science leaders and career researchers. It also debunks the clichéd myth that academics should be left alone in their ivory towers without any obligation to public accountability. We may prefer interacting with lab rats to engaging with the general public but society is a team effort and, for scientists, that starts with team bonding through research and research-led teaching.

A pdf version is free to download from the website of the publisher, The National Academies Press, while a hard copy book, excellent for libraries, is available for purchase.


Paperback:  

Kindle 
Using these links earns us commission at no cost to you
Review by Andrew Taylor-Robinson

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re