Skip to main content

Weapons of Math Destruction - Cathy O'Neil ****

As a poacher-turned-gamekeeper of the big data world, Cathy O'Neil is ideally placed to take us on a voyage of horrible discovery into the world of systems making decisions based on big data that can have a negative influence on lives - what she refers to as 'Weapons of Math Destruction' or WMDs. After working as a 'quant' in a hedge fund and on big data crunching systems for startups, she has developed a horror for the misuse of the technology and sets out to show us how unfair it can be.
It's not that O'Neil is against big data per se. She points out examples where it can be useful and effective - but this requires the systems to be transparent and to be capable of learning from their mistakes. In the examples we discover, from systems that rate school teachers to those that decide whether or not to issue a payday loan, the system is opaque, secretive and based on a set of rules that aren't tested against reality and regularly updated to produce a fair outcome.
The teacher grading system is probably the most dramatically inaccurate example, where the system is trying to measure how well a teacher has performed, based on data that only has a very vague link to actual outcomes - so, for instance, O'Neil tells of a teacher who scored 6% one year and 96% the next year for doing the same job. The factors being measured are almost entirely outside the teacher's control with no linkage to performance and the interpretation of the data is simply garbage.
Other systems, such as those used to rank universities, are ruthlessly gamed by the participants, making them far more about how good an organisation is at coming up with the right answers to metrics than it is to the quality of that organisation. And all of us will come across targeted advertising and social media messages/search results prioritised according to secret algorithms which we know nothing about and that attempt to control our behaviour.
For O'Neil, the worst aspects of big data misuse are where a system - perhaps with the best intentions - ends up penalising people for being poor of being from certain ethnic backgrounds. This is often a result of an indirect piece of data - for instance the place they live might have implications on their financial state or ethnicity. She vividly portrays the way that systems dealing with everything from police presence in an area to fixing insurance premiums can produce a downward spiral of negative feedback.
Although the book is often very effective, it is heavily US-oriented, which is a shame when many of these issues are as significant, say, in Europe, as they are in the US. There is probably also not enough nuance in the author's binary good/bad opinion of systems. For example, she tells us that someone shouldn't be penalised by having to pay more for insurance because they live in a high risk neighbourhood - but doesn't think about the contrary aspect that if insurance companies don't do this, those of us who live in low risk neighbourhoods are being penalised by paying much higher premiums than we need to in order to cover our insurance. 

O'Neil makes a simplistic linkage between high risk = poor, low risk = rich - yet those of us, for instance, who live in the country are often in quite poor areas that are nonetheless low risk. For O'Neil, fairness means everyone pays the same. But is that truly fair? Here in Europe, we've had car insurance for young female drivers doubled in cost to make it the same as young males - even though the young males are far more likely to have accidents. This is fair by O'Neil's standards, because it doesn't discriminate on gender, but is not fair in the real world away from labels.
There's a lot here that we should be picking up on, and even if you don't agree with all of O'Neil's assessments, it certainly makes you think about the rights and wrongs of decisions based on automated assessment of indirect data.
Paperback:  
Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…