Skip to main content

Measures of Genius - Alan Durden ***

There are broadly three ways to write a popular science book. The author can focus on one particular area of science, on the life and work of a key scientist, or use some linking mechanism to pull together a range of topics. This last approach can be very successful, and is tempting to authors and loved by publishers, which implies that they sell well - but it is the most difficult approach to take.

To compare the good and bad sides of such 'linked topic' books, it's only necessary to take a look at titles covering the periodic table. The less successful ones just work through the elements, or a subset of them, in some kind of pattern based on the table itself. But that results in a very mechanical approach, little more than textbook lite. The alternative, typified by The Disappearing Spoon, is to use the broad theme of the chemical elements, but to let the narrative structure carry the reader through, resulting in a far more successful presentation.

Measures of Genius is a linked topic book, pulling together short scientific biographies of historical figures with scientific units named after them. Following an introductory chapter on the nature and development of measurement, we get 14 chapters each on a scientist (in the case of Fahrenheit and Celsius, two for the price of one) who inspired a unit, from very familiar names like Isaac Newton and James Watt to those whose units are better known than the individuals, typified by Ohm, Ampere and Coulomb. However, Alan Durden does not limit himself to the specific scientist's work, where necessary pulling in other names. So, for instance, in Ampere's chapter, Young, Huygens, Arago, Fresnel and Oersted all pop up.

Although the book has a linking theme, it's an arbitrary one, as the selection of scientists to provide unit names has sometimes been decidedly odd. My biggest concern was why we should care about this group of individuals. Durden provides us with plenty of facts about their lives and work, but doesn't build much of a narrative. When covering the well-known figures, the content was solid without adding a lot to the many other scientific biographies on these subjects, staying safely at the uncontroversial end of the spectrum. So, for instance, Newton's sexuality was skirted around, and though his interests in alchemy and biblical research were mentioned, there was little opportunity to understand why they were so important to him. Similarly, Tesla's chapter gives no feel for the fascinating conflict between his genius at electrical engineering and his sometimes shaky grasp of physics, leading to his dismissal of relativity and misapprehension about the nature of electromagnetic radiation.

It was great, however, to find out more about the lesser-known figures. These were inevitably more interesting because there has been so little written about them, though in most case it seems that one of the reasons that they don't feature more widely is that they were rather dull people. There are plenty of facts here, and I think the book would be extremely useful as a way to get some background on the contributions these individuals made to science and technology, but I would have liked a little more flair along the way.


Paperback 
Review by Brian Clegg

Comments

Popular posts from this blog

The Great Silence – Milan Cirkovic ****

The great 20th century physicist Enrico Fermi didn’t say a lot about extraterrestrial life, but his one utterance on the subject has gone down in legend. He said ‘Where is everybody?’ Given the enormous size and age of the universe, and the basic Copernican principle that there’s nothing special about planet Earth, space should be teeming with aliens. Yet we see no evidence of them. That, in a nutshell, is Fermi’s paradox.

Not everyone agrees that Fermi’s paradox is a paradox. To some people, it’s far from obvious that ‘space should be teeming with aliens’, while UFO believers would scoff at the suggestion that ‘we see no evidence of them’. Even people who accept that both statements are true – including  a lot of professional scientists – don’t always lose sleep over Fermi’s paradox. That’s something that makes Milan Cirkovic see red, because he takes it very seriously indeed. In his own words, ‘it is the most complex multidisciplinary problem in contemporary science’.

He points out th…

The Order of Time - Carlo Rovelli ***

There's good news and bad news. The good news is that The Order of Time does what A Brief History of Timeseemed to promise but didn't cover: it attempts to explore what time itself is. The bad news is that Carlo Rovelli does this in such a flowery and hand-waving fashion that, though the reader may get a brief feeling that they understand what he's writing about, any understanding rapidly disappears like the scent of a passing flower (the style is catching).

It doesn't help either that the book is in translation so some scientific terms are mangled, or that Rovelli has a habit of self-contradiction. Time and again (pun intended) he tells us time doesn't exist, then makes use of it. For example, at one point within a page of telling us of time's absence Rovelli writes of events that have duration and a 'when' - both meaningless terms without time. At one point he speaks of a world without time, elsewhere he says 'Time and space are real phenomena.'…

The Happy Brain - Dean Burnett ****

This book was sitting on my desk for some time, and every time I saw it, I read the title as 'The Happy Brian'. The pleasure this gave me was one aspect of the science of happiness that Dean Burnett does not cover in this engaging book.

Burnett's writing style is breezy and sometimes (particularly in footnotes) verging on the whimsical. His approach works best in the parts of the narrative where he is interviewing everyone from Charlotte Church to a stand-up comedian and various professors on aspects of happiness. We get to see the relevance of home and familiarity, other people, love (and sex), humour and more, always tying the observations back to the brain.

In a way, Burnett sets himself up to fail, pointing out fairly early on that everything is far too complex in the brain to really pin down the causes of something as diffuse as happiness. He starts off with the idea of cheekily trying to get time on an MRI scanner to study what his own brain does when he's happy, b…