Skip to main content

Junk DNA - Nessa Carey ****

What grabs the reader fairly early on in Junk DNA is just how wonderfully complex and sophisticated the biological machinery in our cells is. As a non-biologist, I found that reading her description of the way that the cellular mechanisms pull the two copies of a chromosome to opposite sides of the cell, for instance, absolutely riveting. But it's not all superbly functioning miniature marvels: Nessa Carey also explores the many ways that these genetic mechanisms can go wrong. Anyone who ascribes the complexity of biological systems to a designer needs to contemplate just what a messy, over-complex and ad-hoc design has emerged.

I really hadn't though of there being a mechanism for separating copies of chromosomes before - and I think this is the beauty of Carey's book. Us non-biologists have some vague idea of how cells split or proteins are assembled from the genetic 'instructions', but there's a whole host of mechanisms required to go from an apparently simple concept to making it happen, and this really opens up in Junk DNA.

I mentioned how things go wrong. As genetic medical conditions are often a key to unlocking the secret of a cellular mechanism, there is a lot about genetic failures here, some very distressing - I'm personally not a great enthusiast for things medical (I can't even watch Casualty, let alone 24 Hours in A&E), but in this context it at least wasn't gratuitous.

Of course, as the name suggests, at the heart of the book are all the bits of our DNA - the vast majority of the content of our chromosomes - that aren't genes. In her previous book, The Epigenetics Revolution, Carey had already introduced us to some of the workings of what was once referred to as 'junk DNA' - specifically how parts of it turn various genes on and off, effectively acting as the controls that work the mechanisms specified by our genetic blueprints - but in this new book we see many more processes, capabilities, wonders and failings of the super-genetic parts of the system.

I do have a couple of niggles. This is a topic that lends itself to metaphor and simile - I did it without even noticing in the previous paragraph, but Carey plunges into metaphorical mode at the slightest opportunity, and some of her similes are a little painful - when she brings in the movie Trading Places or a Bugatti Veyron, for instance, the process seems forced. (Even the subtitle is a metaphor of sorts.) Also slightly irritatingly, several times she refers to the human appendix as having no function - if she'd read my Universe Inside You, she'd have known that this concept, like classifying all DNA that doesn't code for proteins as junk, went out some time ago (the appendix does have a useful function as a kind of respite centre for friendly bacteria from the wild conditions in the stomach).

The other issue, which I also referred to in my review of The Epigenetics Revolution, and similar to the complaint I had about I, Superorganism is that we end up in Rutherford's 'all science is either physics or stamp collecting' territory. While some the mechanisms themselves are truly fascinating, when the reader gets bogged down in the detail it can begin to seem that there is far too much cataloguing and not enough narrative. Carey has usefully responded to reviews of the previous book by often moving the name of a gene into a footnote, but it doesn't prevent the feeling of drowning in labels when you read something like:
Where C is followed by G in our genome, the C can have a small modification added to it. This is most likely to happen in regions where this CG motif is present in high concentrations. The large number of CCG repeats in the Fragile X expansion provide exactly this environment.
This is by no means the most concentrated example of labellitis, and typical of quite a lot of the text. In the end I was happy to think 'It goes with the territory, live with it.' There is still so much fascinating material in here that it is well worth ploughing through the biological wordfest.


Hardback 

Kindle 
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re