Skip to main content

Time Reborn – Lee Smolin *****

As I write this we are a third of the way through 2013 (time is important here) and I can say with hand on heart this is the best popular science book I have read all year.
Lee Smolin’s book is largely accessible (more on this later) and simply mind-boggling in its scope. What he does here is take on time, and specifically the position of time in physics. Even taken as a simple book on time this is brilliant. The fact is, the majority of books that claim to be about time tell you nothing. It’s striking that A Brief History of Time tells us that amongst a list of deep scientific questions that have answers suggested by ‘Recent breakthroughs in physics, made possible in part by fantastic new technologies’, is ‘What is the nature of time?’ But you can search the book from end to end for any suggestion of what time is or how it works. There is plenty on how we observe time, and how interaction with matter can change these observations, but nothing deeper.
Smolin gives what is, for me, the best analysis of the nature of time from a physics viewpoint in a popular science book I have ever seen. He goes on to describe how most physicists consider that ‘time does not exist’, and comes up with an approach where time becomes real in physics. Now I do have one issue with Smolin here. He says that amongst his non-scientific friends ‘the idea that time is an illusion is a… commonplace.’ This is garbage (or at least his friends are non-representative). The vast majority of people who aren’t physicists or philosophers would say ‘Of course time exists.’ However, Smolin sets off to first persuade us it doesn’t, using the most common arguments of current physics, and then to show how this is a mistake.
In fact, I think the reason most people wouldn’t agree is because it isn’t really true that modern physics says time doesn’t exist. What it says is that the idea of time as a moving present that heads from the past into the future isn’t real, and that there are plenty of concepts in physics like natural laws that appear to be outside of time, and so time isn’t as fundamental as people think. Nor, relativity shows us, is it absolute. This isn’t the same as something not existing or being an illusion, and I think the physicists who use this label have spent too much time talking to philosophers. Dogs aren’t fundamental to the laws of physics, but this doesn’t mean they don’t exist.
Nonetheless, current mainstream physics does prefer time to be kept in a box – and this is where Smolin breaks out. He shows us that pretty well all of physics is based on the idea that we are dealing with closed systems, where in reality there is no so such thing – meaning that it is quite possible that pretty well all existing physics is just an approximation. And he comes up with a mechanism where time, something that actually ticks by and has a universal meaning, can exist (though at the expense of space being quite so real as we thought).
In doing this, Smolin will have irritated a whole lot of physicists. Some will simply not agree – any string theorists, for example, would dismiss his loop quantum gravity viewpoint. Many others will simply not be able to cope. Physicists are, on the whole, a fairly conservative bunch (with a small ‘c’) – they aren’t very good at coming with radical shifts in viewpoint like this. Of course this doesn’t make Smolin right, but it is a fascinating bit of speculation.
The book isn’t perfect. Smolin’s writing style is workmanlike, but suffers from too academic a viewpoint – he doesn’t have the common touch. Oddly, it’s not so much that he baffles us with science, but rather he baffles us with labels which don’t have enough science attached. He has a tendency to use terminology and then say effectively ‘but you don’t need to know what that’s all about.’ I think popular science is much better if you avoid the jargon and instead explain what lies beneath. Also he uses really scrappy hand-drawn illustrations that I suspect are supposed to make them look more friendly and approachable, but actually makes them practically incomprehensible.
These are minor moans though. Whether or not you agree with the physics, this is a book to get you thinking, awash with ideas and totally fascinating. It isn’t the easiest popular science book to understand – it is very much of the ‘read each sentence slowly, and some times several times’ school, yet it is a superb contribution to the field that really puts that cat among the pigeons. Three cheers for Lee Smolin who is, for me, apart from lacking that common touch, the nearest thing we have in the present day to the late, great Fred Hoyle.

Paperback:  

Kindle:  
Using these links earns us commission at no cost to you
Review by Brian Clegg

Comments

Popular posts from this blog

Roger Highfield - Stephen Hawking: genius at work interview

Roger Highfield OBE is the Science Director of the Science Museum Group. Roger has visiting professorships at the Department of Chemistry, UCL, and at the Dunn School, University of Oxford, is a Fellow of the Academy of Medical Sciences, and a member of the Medical Research Council and Longitude Committee. He has written or co-authored ten popular science books, including two bestsellers. His latest title is Stephen Hawking: genius at work . Why science? There are three answers to this question, depending on context: Apollo; Prime Minister Margaret Thatcher, along with the world’s worst nuclear accident at Chernobyl; and, finally, Nullius in verba . Growing up I enjoyed the sciencey side of TV programmes like Thunderbirds and The Avengers but became completely besotted when, in short trousers, I gazed up at the moon knowing that two astronauts had paid it a visit. As the Apollo programme unfolded, I became utterly obsessed. Today, more than half a century later, the moon landings are

Space Oddities - Harry Cliff *****

In this delightfully readable book, Harry Cliff takes us into the anomalies that are starting to make areas of physics seems to be nearing a paradigm shift, just as occurred in the past with relativity and quantum theory. We start with, we are introduced to some past anomalies linked to changes in viewpoint, such as the precession of Mercury (explained by general relativity, though originally blamed on an undiscovered planet near the Sun), and then move on to a few examples of apparent discoveries being wrong: the BICEP2 evidence for inflation (where the result was caused by dust, not the polarisation being studied),  the disappearance of an interesting blip in LHC results, and an apparent mistake in the manipulation of numbers that resulted in alleged discovery of dark matter particles. These are used to explain how statistics plays a part, and the significance of sigmas . We go on to explore a range of anomalies in particle physics and cosmology that may indicate either a breakdown i

Splinters of Infinity - Mark Wolverton ****

Many of us who read popular science regularly will be aware of the 'great debate' between American astronomers Harlow Shapley and Heber Curtis in 1920 over whether the universe was a single galaxy or many. Less familiar is the clash in the 1930s between American Nobel Prize winners Robert Millikan and Arthur Compton over the nature of cosmic rays. This not a book about the nature of cosmic rays as we now understand them, but rather explores this confrontation between heavyweight scientists. Millikan was the first in the fray, and often wrongly named in the press as discoverer of cosmic rays. He believed that this high energy radiation from above was made up of photons that ionised atoms in the atmosphere. One of the reasons he was determined that they should be photons was that this fitted with his thesis that the universe was in a constant state of creation: these photons, he thought, were produced in the birth of new atoms. This view seems to have been primarily driven by re