Skip to main content

The Universe in Zero Words – Dana Mackenzie *****

In awarding this book five stars I am rather reminded of the infamous Samuel Johnson quote on women preachers: ‘A woman’s preaching is like a dog’s walking on his hind legs. It is not done well, but you are surprised to find it done at all.’ Leaving aside that Doctor Johnson might have had to rethink his opinion had he seen Pudsey, the reason I say this is because I’m reviewing a book about mathematical equations. Taken purely as a piece of popular science writing it probably only merits four stars, but I am so amazed that anyone can write a book about a series of equations and make it readable and interesting that I have had to award it five.
When I first saw the title I thought I was about to flick through a nice picture book of astronomical photos, but in fact Dana Mackenzie provides us with plenty of words – it’s just that they are describing these ‘no words’ equations. Mackenzie eases us in gently with the work of the ancient Greeks, then brings us forward in time, allowing the maths (and the equations) to grow in complexity as we go.
What makes the book work so well is that there is plenty of context – we learn about the individuals behind these equations (not always the obvious ones when it comes to, say, Pythagoras) and the historical setting of their devising. There are some rather beautiful hand drawn illustrations of the equations themselves and diagrams (I just wish the handwriting was a little more legible) and the amazing, dog-walking-on-hind-legs feat is that we aren’t turned off by the equations, but rather get some feeling for their beauty and power.
I am not saying this book brings me round to a mathematician’s viewpoint. I still think that their view is too abstract, and that much of the maths they get excited about is hugely ‘so what?’ – but this book really does give you a flavour of why they get so worked up.
Strangely, the book tails off towards the end. This is in part because Mackenzie spends more time on physics (which he is less effective at explaining than maths), and partly because there is less focus on equations. Maxwell’s equations, for example, aren’t explored, just mentioned. Yes, remarkably, by then the reader is so drawn in that we want more equations!
I have two specific gripes apart from this. One is about the introduction. We are told how the great Richard Feynman took on someone with an abacus and beat them on the calculation of cube roots because he knew ‘a famous equation from calculus called Taylor’s formula’ – yet we aren’t told what the equation is. In a book that is all about making equations visible, this rankled for the rest of the book.
The other problem I have is with a bizarre mini-rant that Mackenzie has about those who worry about the impact of mobile phones on their brains. He points out that the photons produced by a mobile phone have not got enough energy to ionise atoms, so don’t present a danger. But this entirely misses the point. After all, the photons produced by microwave ovens aren’t ionising radiation either, but few us would feel comfortable sticking our heads in a functioning microwave. It’s not that I agree with the ‘danger from phones, phone masts and wifi radiation’ lobby – I don’t – but Mackenzie merely muddies the water with this strange irrelevancy.
That’s a very minor complaint, though. If you’ve always been puzzled by mathematical formulae, or wondered why mathematicians bother to get out of bed in the morning, this is the book to let you into their secret world. A remarkable achievement.
Review by Brian Clegg


Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…