Skip to main content

17 Equations that Changed the World [In Pursuit of the Unknown] – Ian Stewart ***

There’s been a trend for a couple of years in popular science to produce ‘n greatest ideas’ type books, the written equivalent of those interminable ’50 best musicals’ or ‘100 favourite comedy moments’ or whatever shows that certain TV companies churn out. Now it has come to popular maths in the form of Ian Stewart’s 17 Equations that Changed the World.
Stewart is a prolific writer – according to the accompanying bumf he has authored more than 80 books, which is quite an oeuvre. That can’t be bad. He is also a professional mathematician – a maths professor – and that potentially is a problem. The trouble is that, much more so than science, mathematicians are not ordinary people. They get excited about things that really don’t get other people thrilled. And it takes an exceptional mathematician to be able to communicate that enthusiasm without boring the pants off you. It’s notable that the most successful maths populariser ever, Martin Gardner, wasn’t a mathematician.
So how does Ian Stewart do here? Middling well, I’d say. The equations he provides us with are wonderful, fundamental ones that even someone with an interest in science alone, who only sees maths as a means to an end, can see are fascinating. In most cases he throws in quite a lot of back story, historical context to get us interested. So the meat of the book is excellent. But all too often there comes a point in trying to explain the actual equation where he either loses the reader because he is simplifying something to the extent that the explanation isn’t an explanation, or because it’s hard to get excited about it, unless you are a mathematician.
The section on the Schrodinger equation, for example, is presented in such a way that it’s almost impossible to understand what he’s on about, throwing around terms like the Hamiltonian and eigenfunctions without ever giving enough information to follow the description of what is happening. (I also always get really irritated with knot theory, as the first thing mathematicians do is say ‘Let’s join the ends up.’ No, that’s not a knot any more, it’s a twisted or tangled loop. A knot has to be in a piece of string (or rope, or whatever) with free ends.)
Inevitably, to give the book real world interest, many of the equations are from science, and Stewart proves, if anything, better at getting across the science than he is the maths (probably because it is easier to grasp the point). The only section I’d argue a little with is the one on entropy, where he repeatedly says that entropy always increases or stays the same, where it’s more accurate to say that statistically it is very, very likely to do so. But there is always a small chance that purely randomly, say a mixture of gas molecules will partly unmix. (He also uses an unnecessarily complex argument to put down the creationist argument that uses entropy to argue for divine intervention, as it’s easiest to explain that you aren’t dealing with a closed system, something he doesn’t cover.)
Overall, then, I am not sure who will benefit from this book. There’s not enough detail to interest people studying maths or physics at university, but it becomes too obscure in a number of places for the general reader. A good attempt, but would have benefited from having a co-author who isn’t a mathematician and who could say ‘Sorry, Ian, I don’t get that. Let’s do it differently.’ Bring back Simplicio. (One for the Galileo fans.)
Paperback (US is hardback):  
Also on Kindle:  
Review by Brian Clegg

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…