Skip to main content

Seven Tales of the Pendulum – Gregory L. Baker ***

There was a time when practically every review we published of an OUP popular science book had the same complaint. What we were forced to say again and again was that this was a book with a great idea, an excellent topic, and an expert writing it. But unfortunately that expert was an academic who didn’t have a clue how to write for the general public and the result was unreadable. In the last year or so, however, things have changed. OUP has come out with a good number of titles (e.g. The Many Worlds of Hugh Everett III) which have been surprisingly readable. Unfortunately, this title is a return to form. It’s a wonderful subject. It has a neat concept in the ‘seven tales’. It’s written by an expert. But it is practically impenetrable.
Things don’t start awfully well in the introduction, when Gregory L. Baker is a little condescending about producing a version of his ‘real’ book for the common herd. But he also reassures us ‘Readers may rest easy knowing that I am mindful of the warning made famous by Stephen Hawking, that every formula reduces the readership by a factor of two.’ The problem is, although it sold well, Hawking’s book has a reputation for being difficult. Yet it is vastly easier to read than this one.
This limitation is frustrating, because Baker does pack in lots of interesting stuff about pendulums. Whether it’s the basic surprise that (despite Galileo), on the whole an ordinary pendulum’s timing isn’t independent of swing size, or explorations of Foucault’s pendulum, torsion pendulums, swinging censors in cathedrals and even the Pit and the Pendulum, there is some excellent material to cover. But the writing is rarely approachable and the author simply misses the whole idea of how to write for a general audience. This is much more the sort of writing you’d find in an undergraduate physics textbook.
I opened a page at random and had a choice of at least four quotes to demonstrate this. Here’s one of them: ‘A sophisticated mathematical procedure may be used to calculate the fractal dimension for the Poincaré section of the chaotic pendulum. But our intuition can at least help demystify the result. Close examination of the Poincaré section shows that its points do not cover an area, but are really a (possibly infinite) set of closely spaced lines. Therefore the Poincaré section is more than a line and less than an area. We then expect its dimension to like between one and two. For the parameter set A(Forcing)=1.5, Q (friction)=4, ωD(forcing frequency)=0.66 the fractal dimension is found to be 1.3. In fact, it is generally true that Poincaré sections for chaotic systems have noninteger dimensions.’ That’s all right then.
The other potential quotes were more dense and impenetrable. You might excuse this because some of the terms have been explained earlier, but the problem is that the approach assumes the way to write popular science is to take a textbook and take out the maths, leaving the explanatory parts, rather than starting from scratch and putting things in terms that people will understand.
Overall, then, a useful and interesting book for physics students who want to find out more about pendulums without doing the maths, but not for the general reader.
Hardback:  
Review by Brian Clegg

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…