Skip to main content

The Many Worlds of Hugh Everett III – Peter Byrne ***

This is a book that made me check and see if it really was published by Oxford University Press. Yes, it had the physical feel of an OUP book – top quality, excellent paper and unusually heavy for its size – but as I started to read, the style was all wrong. OUP popular science books tend to the over-academic in writing style, but this had the feel of an American quality magazine. That was decidedly refreshing – the style had been over used in popular science books after coming into fashion with the likes of James Gleick’s Chaos, but it has become less common, so was encouragingly peppy.
I ought to explain straight away why what I consider in many ways to be an excellent book has only got three stars. This is because the content simply doesn’t work for our measure of a reader with no qualifications in the subject. If you have a physics degree, or possibly if you are a student of philosophy, you will find much in here that is fascinating, and when Peter Byrne is sticking to the biographical side, it’s very approachable, but when he gets into the science, and particularly the interpretation of the science, the wording can be more than a touch impenetrable. This isn’t always because of the science itself – sometimes the wording gets overly heavy. Take these two example sentences:
The problem he pointed to is that in the objective formalism of quantum mechanics, nature proceeds causally, deterministically, but our perception of nature is subjective: macroscopic reality appears to emerge randomly, non-causally, from the microcosm.
Bohr’s philosophy of complimentarity can be viewed as an epistemological framework for holding mutually exclusive opposites: the quantum world is the inaccessible thing itself, the classical world reflects the quantum, bringing it into the realm of reason and knowledge as classically described phenomena.
There’s hardly any science to speak of in these sentences, it’s just that the vocabulary is hardly that of a general interest book.
Any biographer has a problem with the opening. The reader buys the book to read about the subject – (s)he doesn’t really care about the subject’s parents, but the author feels a need to introduce them too, as they are bound to havehad some influence. This is doubly hard in the particular case of Everett. As we don’t really know why we should care about Everett, we really don’t have any interest in, for example, his mother’s poetry. Things liven up when we get to Everett himself, but it takes a certain amount of determination to get through those first couple of chapters.
There’s no doubt that Everett was a fascinating man. Hugely intelligent, yet cold in his attitude to humanity – almost the classic mad scientist type. The sections of the book that are about Everett’s life grab the attention. But focus is likely to stray somewhat in the interwoven chapters about his work. The big problem here is that Byrne never really answers the idiot questions. He comes at Everett’s work as a scientist would. But the general reader wants to know more fundamental things.
So, for example, Everett’s many worlds theory is put forward to deal with the ‘measurement problem.’ Simply put, this asks why big objects like people, made of quantum particles, behave totally differently to the particles themselves. They don’t have the same apparently probabilistic nature. Why is it that measurement seems to pin down a particle where previously it just had a range of probabilities of being in different places, and why are real world sized objects permanently pinned down? Everett answered this by suggesting that everything acts in the spread-out quantum fashion, but each different possibility is in a different parallel world, and we only experience one of these. But the idiot question is why doesn’t the fact that all the particles in my body are always interacting with each other mean the probabilities are permanently collapsed, because that interaction is the equivalent of measurement? Why is there a problem at all? This is never properly explained in a way that the general reader can follow, and therefore the whole exercise seems futile.
The other issue for the non-specialist is how much they can bring themselves to care about Everett. With someone like Einstein or Richard Feynman we have both a remarkable character and someone whose work had a profound effect on science. Everett doesn’t seem to have been the kind of character many would like, and it’s hard to get excited about his achievements. They broadly seem to split between game theory and the multiple worlds idea. When in the late 1970s I started work in Operational Research (the UK equivalent of the Operations Research much mentioned in the book), game theory really had already been dismissed as useless. It was interesting, fun, thought provoking – but not practical for the real world. I never once saw game theory used either at university or in one of the biggest OR departments in the country.
As for the many worlds idea, in the end it’s an interpretation, not something of huge value. It hasn’t got broad support in the community and it certainly (dramatically!) fails Occam’s Razor. A clever idea, penetratingly thought through… but not one that has done a lot for real physics or applied science.
If this sounds negative, I’m not saying you shouldn’t read this book. There’s some in-depth detail on the startling decisions being made on whether or not to start a nuclear bombardment during the cold war. For those with the technical interest, the content is stimulating, and Everett seems to have been one of kind… but I can’t say this is the kind of scientific biography that will appeal to a wide readership.
Review by Brian Clegg


Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…