Skip to main content

From Cosmos to Chaos – Peter Coles ***

There are times when I think there’s a ‘Shoot Ourselves in the Foot’ department at Oxford University Press. It might seem the only explanation for the frequency with which they produce popular science books that are brilliant concepts but terribly executed. In fact, I think the reason is down to their choice of authors. They seem to choose authors on their academic background, rather than their ability to communicate. So what the reader often ends up with is a book that is replete with promise, but that fails to deliver in catastrophic fashion.
This book is perhaps the most dramatic example of this I have ever seen. The subject is fascinating, both in its intellectually engaging nature and its applicability. Yet the contents are a disaster for the popular science reader. Anyone attempting to read it who isn’t at least a student on a maths or physics degree course is doomed to frustration. It simply doesn’t explain enough, and what it does put across makes much too heavy use of maths.
This is hair-tearingly frustrating because the topic is wonderful. In a slim volume of 211 smallish pages, Peter Coles introduces probability theory, the importance of statistics to science and everyday life, the difference between a Bayesian and frequentist approach to statistics and observes how Bayesian statistics could be of great value in getting a better understanding of many areas. And he throws in quite a lot of cosmology, explaining the importance of statistics in the field. Any one of these would make engaging reading in its own right – together it’s a tour-de-force. In content terms this is easily a five star book.
Yet time after time the reader struggles to understand just what is going on. This isn’t helped by an unusually high number of misprints (often missing words rendering a sentence meaningless), but primarily it’s because the language is impenetrable and Coles does not shy away from scattering the page with integral calculus, instantly turning off 90% of the audience. I’ve always felt the famous advice given to Stephen Hawking that each use of an equation halves the audience was exaggerated – and it very much depends how you use those equations – but here they are much too frequent and too complex. Coles also sticks to the representations used in the ‘real’ equations where often these could be simplified by using terms that are more meaningful.
Altogether the resultant effect is huge frustration. For those who can get the point of this book – pretty well any working scientist with a reasonable grasp of maths, for example – it’s highly recommended. And I know scientists are a significant part of the audience for popular science. But a wider audience deserves to access what’s in this book.
I’d like to make a proposition to OUP. How about doing two versions of books like this, the original and one re-written for the general reader by someone who knows how to communicate science outside the scientific community. (I’d even volunteer to write the general reader versions!) Now that really would be something to celebrate. But for the moment there’s more chaos than cosmos in this book.
Hardback:  
Using these links earns us commission at no cost to you  
Review by Brian Clegg

Comments

Popular posts from this blog

Philip Ball - How Life Works Interview

Philip Ball is one of the most versatile science writers operating today, covering topics from colour and music to modern myths and the new biology. He is also a broadcaster, and was an editor at Nature for more than twenty years. He writes regularly in the scientific and popular media and has written many books on the interactions of the sciences, the arts, and wider culture, including Bright Earth: The Invention of Colour, The Music Instinct, and Curiosity: How Science Became Interested in Everything. His book Critical Mass won the 2005 Aventis Prize for Science Books. Ball is also a presenter of Science Stories, the BBC Radio 4 series on the history of science. He trained as a chemist at the University of Oxford and as a physicist at the University of Bristol. He is also the author of The Modern Myths. He lives in London. His latest title is How Life Works . Your book is about the ’new biology’ - how new is ’new’? Great question – because there might be some dispute about that! Many

Stephen Hawking: Genius at Work - Roger Highfield ****

It is easy to suspect that a biographical book from highly-illustrated publisher Dorling Kindersley would be mostly high level fluff, so I was pleasantly surprised at the depth Roger Highfield has worked into this large-format title. Yes, we get some of the ephemera so beloved of such books, such as a whole page dedicated to Hawking's coxing blazer - but there is plenty on Hawking's scientific life and particularly on his many scientific ideas. I've read a couple of biographies of Hawking, but I still came across aspects of his lesser fields here that I didn't remember, as well as the inevitable topics, ranging from Hawking radiation to his attempts to quell the out-of-control nature of the possible string theory universes. We also get plenty of coverage of what could be classified as Hawking the celebrity, whether it be a photograph with the Obamas in the White House, his appearances on Star Trek TNG and The Big Bang Theory or representations of him in the Simpsons. Ha

The Blind Spot - Adam Frank, Marcelo Gleiser and Evan Thompson ****

This is a curate's egg - sections are gripping, others rather dull. Overall the writing could be better... but the central message is fascinating and the book gets four stars despite everything because of this. That central message is that, as the subtitle says, science can't ignore human experience. This is not a cry for 'my truth'. The concept comes from scientists and philosophers of science. Instead it refers to the way that it is very easy to make a handful of mistakes about what we are doing with science, as a result of which most people (including many scientists) totally misunderstand the process and the implications. At the heart of this is confusing mathematical models with reality. It's all too easy when a mathematical model matches observation well to think of that model and its related concepts as factual. What the authors describe as 'the blind spot' is a combination of a number of such errors. These include what the authors call 'the bifur