Skip to main content

Fermat’s Last Theorem [Fermat's Enigma] – Simon Singh *****

Just as the US publishers of Harry Potter and the Philosopher’s Stone reckoned the US public couldn’t cope with the word ‘philosopher’ and changed the title, this is calledFermat’s Enigma in the US (it could also be because of another book of the same name by Amir Aczel). But crazy assumptions from publishers apart, it’s the superb story of a bizarre little problem that no one could solve until the ever-wily mathematician Fermat scribbled in a margin that he had a wonderful solution, only there wasn’t room to write it down.
Fermat may well have been boasting, but it threw down a gauntlet to hundreds of mathematicians who were to follow until it was finally achieved in the 20th century. Don’t worry if the maths doesn’t interest you – the story will, both in its historical context and in the insight into the work and nature of modern mathematicians.
In some ways the star of the book is Andrew Wiles, the British Mathematician who pretty well single-handedly cracked the problem with an unusual level of secrecy, rather than the typical sharing approach of the profession. But equally it’s Fermat himself.
Whether or not Fermat actually had a solution is a moot point – but he certainly didn’t have Wiles’ complex approach. In fact it seems so difficult to come up with a straightforward solution to this problem that Fermat has to be more than a little doubted.
Like all the best popular science books – and this certainly is one of the best – it brings in a whole range of extras historically and mathematically to add to the fascinating cast. What can I say? Buy it!
Paperback:  
Kindle:  
Review by Brian Clegg
Community Review – Katy
I am 12 years old and I love maths. This book was amazing! It is the best book I have ever ever read. I really enjoyed all of it. I especially liked the bits with examples in because it helped me to understand more because I am doing my GCSE in maths in 4 months. It was fascinating to learn about the theorem and the story behind it. It tells you about lots of different people who have attempted to prove the theorem. It also talks about lots of different areas of mathematics associated with the theorem that do not even sound remotely similar. It is amazing to think that such a simple theorem has taken so long to solve – 358 years in fact. This book has been so inspirational to me. It has made my passion for mathematics stronger. I would strongly recommend it to anyone. You will not be able to put it down!!!!!!!!
Additional Review – Stephen Goldberg – ****
Fermat’s last theorem was that a certain equation, under certain circumstances, had no possible solution. This theorem was finally proven in 1995 by mathematician Andrew Wiles. What made Fermat’s last theorem so intriguing to mathematicians was that Pierre de Fermat, in 1637, claimed to have proven it but left behind no written proof. Since that time and until 1995, mathematicians around the world have been trying to prove this theorem. It is not even known if Fermat himself actually proved it. The object of this book was to explain how this puzzle was finally solved. But the book is not just about Andrew Wiles. Author Simon Singh takes the reader through a fascinating tour of the history of mathematics before delivering the solution to us.
On his way to proving Fermat’s theorem, Wiles used a variety of techniques developed by earlier mathematicians. When Singh takes us though Wiles work and the use of earlier mathematical tools, he takes extensive detours to give significant biographical information on these earlier mathematicians. In this, Singh did a most admirable job. The book starts with Wiles’ presentation of his proof in 1993, but quickly detours to discuss the Greek mathematicians Pythagoras and Euclid. As Singh leads us through mathematical history he also pays significant attention to notable mathematicians Leonhard Euler (1707-1783), David Hilbert (1862-1943), and Alan Turing (1912-1954), among others. Particularly interesting was the chapter “A mathematical disgrace” where Singh discusses the difficulties faced by women mathematicians, most notably Sophie Germaine (1776-1831) and Emmy Nother (1882-1935). Also interesting was how Wiles worked in almost complete seclusion for a number of years. After Wiles presented his proof in 1993, errors were found, and he struggled for another two years before finally completing his work.
Where the book fails is in trying to actually explain number theory. There is a lot of math in this book, some of it relegated to appendices at the end. Very difficult to understand were E-series and M-series. Singh also failed to adequately explain mathematical techniques such as the method of Kolyvagin and Flach or the Taniyama–Shimura conjecture. If the objective of the book was to actually explain the proof of Fermat’s theorem then it fails as I understood it no better after having read the book than before. Where the book succeeds is in explaining how mathematicians build on other mathematician’s work and how a proof in mathematics, based on logical reasoning, is conceptually different than proof in other sciences that are based on experimentation and observation. The writing style was very accessible and easy to understand (aside from the math) and the biographies he writes are fascinating. Overall, this book was well worth reading for anyone interested in the history of science or mathematics.

Comments

Popular posts from this blog

Cosmology for the Curious - Delia Perlov and Alex Vilenkin ***

In the recently published The Little Book of Black Holes we saw what I thought was pretty much impossible - a good, next level, general audience science title, spanning the gap between a typical popular science book and an introductory textbook, but very much in the style of popular science. Cosmology for the Curious does something similar, but coming from the other direction. This is an introductory textbook, intended for first year physics students, with familiar textbook features like questions to answer at the end of each chapter. Yet by incorporating some history and context, plus taking a more relaxed style in the writing, it's certainly more approachable than a typical textbook.

The first main section, The Big Bang and the Observable Universe not only covers basic big bang cosmology but fills in the basics of special and general relativity, Hubble's law, dark matter, dark energy and more. We then move onto the more speculative (this is cosmology, after all) aspects, brin…

Astrophysics for People in a Hurry – Neil deGrasse Tyson *****

When I reviewed James Binney’s Astrophysics: A Very Short Introduction earlier this year, I observed that the very word ‘astrophysics’ in a book’s title is liable to deter many readers from buying it. As a former astrophysicist myself, I’ve never really understood why it’s considered such a scary word, but that’s the way it is. So I was pleasantly surprised to learn, from Wikipedia, that this new book by Neil deGrasse Tyson ‘topped The New York Times non-fiction bestseller list for four weeks in the middle of 2017’.

Like James Binney, Tyson is a professional astrophysicist with a string of research papers to his name – but he’s also one of America’s top science popularisers, and that’s the hat he’s wearing in this book. While Binney addresses an already-physics-literate audience, Tyson sets his sights on a much wider readership. It’s actually very brave – and honest – of him to give physics such prominent billing; the book could easily have been given a more reader-friendly title such …

Once upon and Algorithm - Martin Erwig ***

I've been itching to start reading this book for some time, as the premise was so intriguing - to inform the reader about computer science and algorithms using stories as analogies to understand the process.

This is exactly what Martin Erwig does, starting (as the cover suggests) with Hansel and Gretel, and then bringing in Sherlock Holmes (and particularly The Hound of the Baskervilles), Indiana Jones, the song 'Over the Rainbow' (more on that in a moment), Groundhog Day, Back to the Future and Harry Potter.

The idea is to show how some aspect of the story - in the case of Hansel and Gretel, laying a trail of stones/breadcrumbs, then attempting to follow them home - can be seen as a kind of algorithm or computation and gradually adding in computing standards, such as searching, queues and lists, loops, recursion and more.

This really would have been a brilliant book if Erwig had got himself a co-author who knew how to write for the public, but sadly the style is mostly heavy…